Contributors mailing list archives
contributors@odoo-community.org
Browse archives
Large Data Files
by "Jerôme Dewandre" <jerome.dewandre.mail@gmail.com> - 20/08/2024 17:26:36Hello,
        
I am currently working on a syncro with a legacy system (adesoft) containing a large amount of data that must be synchronized on a daily basis (such as meetings).
It seems everything starts getting slow when I import 30.000 records with the conventional "create()" method.
I suppose the ORM might be an issue here. Potential workaround:
1. Bypass the ORM to create a record with self.env.cr.execute (but if I want to delete them I will also need a custom query)
2. Bypass the ORM with stored procedures (https://www.postgresql.org/docs/current/sql-createprocedure.html)
3. Increase the CPU/RAM/Worker nodes
4. Some better ideas?
What would be the best way to go?
A piece of my current test (df is a pandas dataframe containing the new events): 
@api.model
    def create_events_from_df(self, df):
        Event = self.env['event.event']
        events_data = []
        for _, row in df.iterrows():
            event_data = {
                'location': row['location'],
                'name': row['name'],
                'date_begin': row['date_begin'],
                'date_end': row['date_end'],
            }
            events_data.append(event_data)
        # Create all events in a single batch
        Event.create(events_data)
Thanks in advance if you read this, and thanks again if you replied :)
Jérôme
Follow-Ups
- 
                
- 
                
- 
                Re: Large Data Filesby "Jerôme Dewandre" <jerome.dewandre.mail@gmail.com> - 02/05/2025 23:54:43 - 0
- 
                
- 
                
- 
                Re: Large Data Filesby "Jerôme Dewandre" <jerome.dewandre.mail@gmail.com> - 20/08/2024 23:51:41 - 0
- 
                Re: Large Data FilesbyClosingAp Open Source Integrators Europe, LDA., Daniel Reis- 20/08/2024 19:42:00 - 0
- 
                
- 
                
-